skip to main content


Search for: All records

Creators/Authors contains: "Clough, Katy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    In this work we study the long-lived post-merger gravitational wave signature of a boson-star binary coalescence. We use full numerical relativity to simulate the post-merger and track the gravitational afterglow over an extended period of time. We implement recent innovations for the binary initial data, which significantly reduce spurious initial excitations of the scalar field profiles, as well as a measure for the angular momentum that allows us to track the total momentum of the spatial volume, including the curvature contribution. Crucially, we find the afterglow to last much longer than the spin-down timescale. This prolongedgravitational wave afterglowprovides a characteristic signal that may distinguish it from other astrophysical sources.

     
    more » « less
  3. Abstract We demonstrate the flexibility and utility of the Berger–Rigoutsos adaptive mesh refinement (AMR) algorithm used in the open-source numerical relativity (NR) code GRC hombo for generating gravitational waveforms from binary black-hole (BH) inspirals, and for studying other problems involving non-trivial matter configurations. We show that GRC hombo can produce high quality binary BH waveforms through a code comparison with the established NR code L ean . We also discuss some of the technical challenges involved in making use of full AMR (as opposed to, e.g. moving box mesh refinement), including the numerical effects caused by using various refinement criteria when regridding. We suggest several ‘rules of thumb’ for when to use different tagging criteria for simulating a variety of physical phenomena. We demonstrate the use of these different criteria through example evolutions of a scalar field theory. Finally, we also review the current status and general capabilities of GRC hombo . 
    more » « less
  4. Abstract The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas. 
    more » « less